
Operating System Support for Fine-grained Pipeline
Parallelism on Heterogeneous Multicore Accelerators

Atsushi Koshiba
(Student and Presenter)

Tokyo University of Agriculture and
Technology

koshiba@namikilab.tuat.ac.jp

Ryuichi Sakamoto

The University of Tokyo

r-sakamoto@hal.ipc.i.u-tokyo.ac.jp

Mitaro Namiki

Tokyo University of Agriculture and
Technology

namiki@cc.tuat.ac.jp

On-chip special-purpose accelerators are a promising
technique in the achievement of high-performance and
energy-efficient computing. In particular, fine-grained pipelined
execution with multicore accelerators is suitable for stream-
ing applications such as JPEG decoders, which consist of a
series of different tasks and process streaming data. CPUs
that assign each task to appropriate accelerators and execute
using pipeline parallelism achieve much performance gain.

Although accelerators have great potential of perfor-
mance, the device driver overhead leads to performance
degradation. In a pipelined execution, user processes such
as OpenCL Runtime are responsible for executing tasks as-
signed to accelerators, controlling the direct memory access
(DMA) for data transfers, and synchronizing all devices ev-
ery pipeline stage. User processes are forced to commu-
nicate with the respective device drivers while accessing
accelerators and DMAs and handling their interrupts. This
user/kernel interaction causes a microsecond order over-
head, which results in a performance penalty.

Some researchers propose an OS support for effective
use of accelerators. [2] proposes an OS-level abstraction of
GPUs and a programming model for streaming applications.
However, its focus is limited to GPUs. [1] proposes an task
scheduling scheme for efficient access to accelerators. How-
ever, this method focuses on fair sharing of accelerators dur-
ing multi-tasking, and does not support pipelined execution.

To reduce the driver overhead, we propose an OS sup-
port mechanism to eliminate interactions between user-
mode applications and kernel-mode drivers. We present a
kernel module namedAccelerator Pipelining Controller

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CONF’yy, Month d–d, 20yy, City, ST, Country.
Copyright c⃝ 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

(APC), which is responsible for managing all accelerators
and DMAs. The APC analyzes the accelerator usage pat-
terns of pipelining applications and manages all task exe-
cutions and data transfers until all pipeline stages are com-
plete. Our approach supports applications that are written in
a producer-consumer model using OpenCL APIs.

The APC usesa pipelining table, which represents the
executing tasks on devices (accelerators, DMAs) of each
pipeline stage, to execute all the pipeline stages without in-
voking the associated user processes. The table is automat-
ically generated by profiling the OpenCL application in ad-
vance. The profiler detects the task dependency and data al-
location by analyzing the OpenCL kernels and their data ac-
cess patterns. Next, it creates the table for the application.
The APC reads the pipelining table of the target application
at the beginning of the execution. It, then, controls the accel-
erators and DMAs according to the table.

To estimate the effectiveness of our method, we de-
veloped a prototype of heterogeneous multicore platform,
which consists of a host processor (ARM Cortex-A9) and
an image processing accelerator. We also implemented the
device driver for the accelerator on Linux 4.4.0. Then, we
executed programs on the accelerator using the driver, and
measured the execution time in one pipeline stage. The result
shows that the consequent overhead occupies more than 50%
of the execution time in one stage. Because our method gets
rid of the interactions between user processes and drivers,
we expect that our method can improve processing speed
by up to 1.8X. We also expect that our method can be more
effective as the number of accelerators increases.

References
[1] K. Menychtas, K. Shen, and M. L. Scott. Disengaged schedul-

ing for fair, protected access to fast computational accelerators.
SIGPLAN Not., 49(4):301–316, Feb. 2014. .

[2] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. Ptask: Operating system abstractions to manage
gpus as compute devices. InProceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 233–248. ACM, 2011.

Operating System Support for Fine-grained Pipeline Parallelism
on Heterogeneous Multicore Accelerators

Background

Proposed Ideas

Evaluation

Atsushi Koshiba (Student)†1, Ryuichi Sakamoto†2, Mitaro Namiki†1

†1Tokyo University of Agriculture and Technology, †2The University of Tokyo

 User-level control of FGPP leads to poor performance

User-level apps (e.g., OpenCL Runtime) have to use device drivers
to execute tasks on accelerators, control DMAs, and synchronize them
→ causing frequent context switches

The switching overhead can occupy roughly 50% of the execution time
(shown in our evaluation results)

 Results

Our approach improves processing speed by up to 1.8x in an
ideal condition
• Used one accelerator and DMAs
• Evaluated a sepia filter, an alpha blender, and a gray filter
• Input data size processed in one stage was 1.5 kB

Our approach can be more effective as the number of
accelerators increases

 Implementation of our evaluation environment

 Implemented a prototype of a heterogeneous multi-core platform

 Analyzing device driver overhead
 Evaluated the execution time of image processing apps in one pipeline stage
Measured T(ioctl), T(ctrl), … independently using hardware counters

 Future Work

 Implement a prototype of the APC and the OpenCL code profiler
 Implement a heterogeneous platform with multi-core accelerators

[1] Nasibeh Teimouri et al., “Revisiting accelerator-rich CMPs: challenges and solutions”, DAC 2015.
[2] Koichiro Masuyama et al., “A 297MOPS/0.4mW Ultra Low Power Coarse-grained Reconfigurable Accelerator CMA-SOTB-2,” ReConFig 2015.

Item Specification
Main platform MicroZed 7020 SOM

Host OS Linux 4.4.0

Host CPU
ARM Cortex-A9 @ 667MHz

(1GB RAM)

Accelerator
CC-SOTB [1] @ 60MHz

(4kB local memory)

0.0

20.0

40.0

60.0

80.0

sepia alpha gray sepia alpha gray

device driver our approach (ideal)

T(trans) T(exec) T(wakeup)
T(interrupt) T(ctrl) T(ioctl)

Execution Time [us]

 Fine-grained pipeline parallelism (FGPP) on accelerators
achieves high-performance and energy-efficient computing [1]

FGPP is a technique to overlap task executions and data transfers
• Assigning each task to appropriate accelerators
• Pipelining data between the accelerators

Effective for streaming apps (e.g., JPEG encoder/decoder)

 OS-level run-time support for FGPP on accelerators

A new kernel module named Accelerator Pipelining Controller (APC)
APC manages all accelerators and DMAs without invoking user apps

• reduce the overhead related to switching user/kernel mode
Applicable to OpenCL apps. written in a producer-consumer model
Supports accelerators which consist of basic functions:

processing units (e.g., ALUs), a local memory and a DMA

 Code offloading based on profiled task-dependency information

The pipelining table represents executing tasks on accelerators/DMAs
and input/output data allocation in pipeline stages

The table is automatically generated by profiling (shown below)
APC controls accelerators/DMAs according to the table at run-time

→ causes NO user/kernel interaction while executing the app

Stage1 Stage2 Stage3 Stage4 Stage5

DMA1 src. : host
dest. : accel.1
size : 0x800

src. : host
dest. : accel.1
size : 0x800

src. : host
dest. : accel.1
size : 0x800

src. : host
dest. : accel.1
size : 0x800

src. : host
dest. : accel.1
size : 0x800

Accelerator1 exec func1() exec func1() exec func1() exec func1()

DMA2 src, dest, size src. dest, size src. dest, size

Accelerator2 exec func2() exec func2()

DMA3 src. dest, size

・・・

Describe tasks
executed on each

device every
pipeline stage

Acknowledgment:
This work was supported by Grant-in-Aid for JSPS Research Fellow 16J06711.

Analyze task dependency
&

Generate pipelining table

Execution time in one pipeline stage

Evaluate streaming applications using multiple accelerators
Take interference in multi-tasking into account

Since our approach
causes no User/OS

interaction,
T(ioctl) and T(wakeup)

are eliminated

※We estimated the results of “our approach” based on the results of “device driver”

