
Caribou: A Platform for Building Smart Storage

Zsolt István (presenter) David Sidler Gustavo Alonso
Systems Group, Dept. of Computer Science, ETH Zürich, Switzerland

{firstname.lastname}@inf.ethz.ch

1. Background
As an answer to increasing data sizes and stagnating CPU
performance, novel database engines and data processing
applications are designed to have disaggregated architec-
tures [3]. This means separating compute and storage nodes
with the benefit that the two layers can be scaled separately.
This leads to more efficient use of resources. As a tradeoff,
however, the increased data movement often becomes a bot-
tleneck. For this reason it can be beneficial to push down
parts of filtering or processing to the storage to avoid unnec-
essary data movement through the application stack.

In this work we look beyond logical specialization of
storage nodes for data processing applications and explore
how physical specialization can offer benefits in terms of
throughput and latency, but not only. Thanks to hardware
pipelining, complex application-specific processing can be
pushed down to the storage without impacting performance.

The resulting system, that we call Caribou, provides a
key-value store interface common to many data processing
applications and has a modular architecture that allows plug-
ging in different application-specific processing units (e.g.,
complex filtering predicates for SQL queries).

2. Design Overview
In this poster we present Caribou: a distributed key-value
store with scan capabilities that exposes DRAM over a
10Gbps network, and has been designed with in-storage pro-
cessing in mind, that the higher level application can take ad-
vantage of. We demonstrate how a distributed query engine
can push down selection predicates and regular expression
matching, but the architecture is modular and extensible.

Caribou combines the state-of-the-art with new ideas. On
the one hand, we build upon our 10Gbps low-latency TCP/IP
stack [1] and our work on low-latency replication in hard-
ware [2]. On the other hand, we address the shortcomings of
the state-of-the-art in FPGA key-value stores by implement-
ing a hash table that can handle collisions well and proper
memory allocation that can scale to larger capacity storage.
We chose to implement a Cuckoo hash table because it of-
fers constant time read operations, important for providing
predictable access to the data. Writes are also constant time
from the point of view of the layers above because kick-outs

are handled in parallel to the regular operations. To make
sure that memory is used efficiently we implemented a slab-
based memory allocator similar to the one in Memcached. In
addition to point lookups, Caribou supports scan operations
as well. Scans rely on bitmaps exposed by the memory allo-
cator to access only parts of the memory that contain values.

The key-value store has been designed to accommodate
pluggable application-specific processing units, that work on
data that is being retrieved from memory. For our prototype
we focused on distributed databases and added two ways
of filtering: a pipelined comparison-based selection unit and
a regular expression-based selection unit. Both are runtime
parametrized to perform complex filtering. The overhead of
parameterization per request is negligible, but filtering is
most effective when combined with scans.

In the poster we highlight why reconfigurable hardware
is a promising way of exploring ideas around smart storage:
while in software there is an inherent trade-off between
functionality and performance, in that additional or more
complex functionality often leads to lower throughput, in
hardware the trade-off is different. Throughput can be fixed
and additional functionality results in more chip area used.

3. Faster Exploration
Caribou offers high performance access to DRAM at the
moment, but it could serve data from flash storage as well.
More importantly, the key-value store API and the ability to
push down application-specific processing makes it suitable
for prototyping different kinds of smart storage. Since the
processing logic is plugged into the key-value store using
simple streaming interfaces, the design of compute units is
greatly simplified and data management is already taken care
of. This reduces the “entry barrier” to exploring new ideas.
In the poster we sketch how Caribou could be used to speed
up domain-specific processing in two data science use-cases.

References
[1] D. Sidler, Z. Istvan, G. Alonso. Low-Latency TCP/IP Stack for

Data Center Applications In FPL’16.

[2] Z. István, D. Sidler, G. Alonso, M. Vukolic. Consensus in a
Box: Inexpensive Coordination in Hardware In NSDI’16.

[3] S. Loesing, M. Pilman, and others. On the design and scalabil-
ity of distributed shared-data databases. In SIGMOD’15.

1 2017/4/12



M
o

ti
va

ti
o

n
Zsolt István, David Sidler, Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zürich
{firstname.lastname}@inf.ethz.ch

C
o

n
tr

ib
u

ti
o

n
A

p
p

lic
at

io
n

s

Acknowledgements: This work is funded in part through the Microsoft Joint Research Center MSR-ETHZ-EPFL and an equipment donation from Xilinx. 

Caribou: A Platform for Building Smart Storage

Growing Data Sizes  Distributed Systems

Reducing the Data Movement Bottleneck

Caribou: Distributed Storage + Pluggable Processing

Intelligent Storage for DBs Processing for Data Sciences

•Data sizes increasing, more complex problems ↔ CPU speeds stagnating
•Data processing systems designed to be distributed
•Scalability achieved through separation of processing and storage nodes
•Networking is an important limiting factor

•(Pre-)Processing data in storage reduces transfer sizes
•Design challenge: Complex processing without impacting 
throughput or latency?

Caribou

Key-value store interface (TCP/IP)

Distributed data processing application

Processing

Storage 

Node

Storage 

Node

Storage 

Node

Processing Processing

Z
A

B

Z
A

B

DRAM

FPGA

Network processing (TCP/IP)

Hash Table

Replication

Memory (De)Allocator

Bitmap Management

Processing

10Gbps Network

•KVS Interface + Scans
•10Gbps TCP/IP networking 
•Cuckoo hash table
•Slab-based memory allocation
•Replication (Zookeeper Atomic 
Broadcast)

•High throughput (network bound)
•Latency dominated by clients

•Filtering tuples during a scan or lookup
1) Byte-offsets and predicates (int, byte columns)
2) Regular expressions (less structured columns)

•Pipeline rate might be lower than SW – but can 
add functionality without overhead

•KVS manages data + custom processing block

•Example1: Machine learning – Parameter Server

•Example2: Search – Document store

Computation

Δw

Data 
Partition

m’

Parameter Server

m’= m+ f(Δw)

Functionality vs. Throughput
Functionality vs. Chip Area

{id: 1200546,
name: “Jack.S”,
address: “Some 
Street”,
…}

Index 
Structures 
for Queries

In-storage Proc.

•Clients compute updates
•Server stores updates and 
computes new model 
•Clients get new model

•Store document (JSON) data
•Processing on schema, Regex to 
index

Smart Storage

Processing nodes (DBMS / Data science app)

Storage nodes (Memory/Disks)

Network

Point lookups and filter: Scan and filter:


