
DeNoVo malloc: Validating Data in Persistent Memory

Arthur Martens†

TU Braunschweig

Rouven Scholz∗‡

TU Braunschweig

Phil Lindow∗‡

TU Braunschweig

Marc A. Kastner‡

TU Braunschweig

Rüdiger Kapitza
TU Braunschweig

Extended Abstract
1 Fast, byte addressable persistent memory that maintains its

state across power cycling events has already hit the market.
Products based on battery-backed DRAM, have been avail-
able for more than two years and recently MRAM, FRAM
or ReRAM memory is available for embedded devices. This
new type of memory demands specialized system support to
ensure consistency in case of power failures and data retrieval
after a system restart. Moreover, due to the longevity of data
stored in persistent memory, this data is also more suscepti-
ble to soft errors such as bit flips caused by radiation, wear
out, or temperature effects. Being already persistent, the data
won’t be stored on secondary storage. Consequently, data
corruptions in main memory cannot be resolved by simply
restarting the system. The latter, however, limits the usability
of persistent memory and poses a high risk of a permanent
inconsistent system state.

2 In this poster we present DeNoVo malloc, a dependable
non-volatile memory allocator that protects the entire persis-
tent memory in the system from power failures as well as tran-
sient faults. While the kernel components are protected with a
tailored solution, the entire user space, including all memory
allocated by the user, is guarded by an approach that combines
the allocator with software transactional memory (STM).

3 The API of DeNoVo malloc is similar to the malloc()
function provided by LibC. The only difference to traditional
C or C++ code is that the programmer has to wrap all access
to persistent memory into transaction atomic blocks provided
by GCC. These blocks are executed with STM semantics.
Using a write-back strategy, no changes are made to persistent
memory if a power failure interrupts a transaction. To provide
data validation on top of the traditional STM approach, we
exploit the implicit code instrumentation provided by GCC’s
transaction atomic blocks. This allows us to control and
manipulate every word access.

4 To be able to validate persistent data, whenever it is ac-
cessed for the first time during a transaction, DeNoVo malloc
allocates twice the amount of requested memory. The ad-

ditional space is used to store error correction code (ECC)
words in between the original data words. In principle any
ECC implementation is usable here. However, speed is an
important factor to keep the performance reasonable. There-
fore, our solution uses CRC32c for error detection. It has
a hamming distance of 8 for a word length of 64 bit, and
is implemented in hardware on x86 CPUs supporting the
SSE 4.2 extension. Error correction relies on multiple trials.
This is aided by an error correction halfword C to reduce
the amount of possible correction candidates. Although we
always have to try multiple solutions, the error correction still
remains reasonable fast and any injected error, up to 8 bits,
was correctly repaired by this approach.

Since all original data words are interleaved with ECC
now, any access to this data outside a transaction will yield
corrupted results. This kind of bug is very common especially
when implementing the STM paradigm into existing appli-
cations. Moreover, accessing persistent data without transac-
tions is unsafe in the presence of power failures. In order to
mitigate this kind of bug, all addresses to persistent memory
that are exposed by DeNoVo malloc are placed in a special
Transaction Staging (TxStaging) section that has no access
rights. Only if these addresses are accessed within a trans-
action, the addresses are transformed to the actual section
where the persistent memory is mapped.

5 To evaluate the performance of DeNoVo malloc, we
looked at the traversal times of a transactional linked list,
several STAMP Benchmarks and Memcached. Compared to
a plain STM solution, DeNoVo malloc achieves 50% to 90%
performance, whereby transactions with a small write set and
short commit period are impacted the most. For this type
of transactions, however, our approach highly outperforms
pmemobj, an object store for persistent memory provided by
http://pmem.io.

∗ These authors will present the poster
† PhD Student
‡ Student

http://pmem.io

DeNoVo malloc: Validating Data in Persistent Memory

Arthur Martens, Rouven Scholz, Phil Lindow, Marc A. Kastner, Rüdiger Kapitza

TU Braunschweig | Institute of Operating Systems and Computer Networks

Persistent Memory is Available
■ Battery-backed DRAM

■ MRAM, FRAM, ReRAM

■ PCM (Intel Optane) (to be released this year)

Need for System Support
■ Persistent data must be:

▪ Restorable

▪ Consistent in case of power failures

▪ Dependable (since data is stored for a long time)

Fault Tolerant Persistent Memory

▪ Error correction

via multiple trials

▪ Tolerates up to 8 bit flips

Programming Support
▪ Access to persistent memory without transactions:

▪ …is easily overseen

▪ …will almost always yield corrupted data

▪ …is unsafe in case of power failures

 Keep addresses to persistent memory always within TxStaging section

Programming Model

■ State of the art:

▪ Utilize STM for power failure tolerance

■ DeNoVo malloc STM extension:

▪ Persistent data validation on access

void push_front(widged_t widged) {
__transaction_atomic {

node_t* node = dnv_malloc(sizeof(node_t));
node->payload = widged ;
node->next = head_ ;
head_ = node ;

} // transaction commit
}

TM_STORE(node->next,
TM_LOAD(head_));

STM: Software Transactional Memory

Architecture
■ Goal: protect entire persistent memory in the system

■ Lightweight: minimize data that needs protection

Manages physical

memory and detects

power failures

Restores memory

Memorizes

mapped pages Initializer

STM1

Allocator

Virtual Address Manager

Chunk Table

Kernel Module

HEAP
Static

Data

Dependable persistent memory

1): STM is based on TinySTM library from http://tmware.org/tinystm

A B C
=A B

D
=CRC32c(W)

ECC Word: EOriginal Word: W

W0 W1 W2 W3
Original object

W0 E0 W1 E1 W2 E2 W3 E3
Stored object

DetectionCorrection

needs to be

prevented

TxStaging Unused Mapped persistent memory

Address: N 1.5N 2N 3N

No access rights Read and write access granted

W0 W1 W2 W3

Addressed

object
W0 E0 W1 E1 W2 E2 W3 E3

Stored

object

Transformed within transaction

pmemobj: persistent object store provided by http://pmem.io

Institute of Operating Systems

and Computer Networks

Evaluation
▪ Dependable access achieves 50% to 90% of performance

compared to pain STM

▪ Most performance impact on read intensive workload

▪ Always outperforms pmemobj for transactions

with a small write set

Read list Write list

0

20

40

60

80

100

SSCA2 Genome Bayes Memcached

P
e
rf

o
rm

a
n

c
e
 i
n

 % with reliability

Comparison of performance for STAMP and Memcached

STAMP: Stanford Transactional Applications for Multi-Processing

1 2

3

4

5

