
SnailTrail: Online Bottleneck Detection for your Dataflow

†Ralf Sager, *John Liagouris, Desislava Dimitrova, ‡Andrea Lattuada, Vasiliki Kalavri
‡Zaheer Chothia, ‡Moritz Hoffmann, Timothy Roscoe

Systems Group, Department of Computer Science, ETH Zürich
firstname.lastname@inf.ethz.ch, †MSc student, ‡PhD student, *poster presenter

Motivation Understanding the performance of large-scale
data processing applications is hard. In distributed dataflow
systems, the computation of several parallel processes is
interleaved with data and control communication and ex-
ecution dependencies typically span multiple system com-
ponents. In such an environment, bottleneck detection is
cumbersome and currently relies heavily on humans. After
decades of systems research, the state-of-the-art in perfor-
mance analysis still relies on offline trace processing, thus
it is only suitable for batch computations and post-mortem
reports. This work presents SnailTrail, a novel frame-
work for online performance analysis in modern dataflow
engines that can identify bottlenecks in real-time and make
automated optimization possible at runtime.

Our Approach We make the observation that modern
dataflow systems are built on top of common execution
primitives. Based on that, we introduce a general instru-
mentation methodology that enables tracking of important
events in the execution of a dataflow with negligible per-
formance overhead. SnailTrail uses the generated event
streams to construct and continuously maintain an evolving
graph model of system activities, inspired by the concept of
Program Activity Graphs (PAGs) in critical path analysis [1].
In contrast to existing approaches, our framework provides
online performance analytics at scale: execution bottlenecks
are identified at runtime and within configurable fine-grained
time windows. This online analysis provides unprecedented
performance insights on long-running computations (e.g. in
deep learning) and continuous computations on unbounded
data (e.g. in IoT applications) where traditional critical path
analysis is not applicable.

SnalTrail relies on the notion of transient critical
paths, a time-oriented adaptation of the standard critical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys’17,
Copyright c© ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/.

path. Transient critical paths serve as a “signature” of the
dataflow execution, encoding valuable performance metrics,
while also possessing a set of interesting properties that can
serve as lightweight rules to verify the correctness of the
instrumentation itself. Interestingly, transient critical paths
are also resilient to clock skewness and incomplete activity
logs (which naturally occur in distributed system tracing),
and their computation can be efficiently parallelized.

Early Results We have implemented the core engine of
SnailTrail on top of Timely Dataflow [3], a general-
purpose streaming system with native support for data-
parallel computations. SnailTrail is designed to analyze
the performance of dataflow systems with hundreds, even
thousands, of parallel workers in near-real time and with
modest computational resources. As a proof of concept, we
have applied our methodology to Timely Dataflow itself. We
show how the transient critical paths can be used to generate
online performance summaries, which are more informative
than summaries provided by offline analyzers [2, 4].

Ongoing Work We are currently extending SnailTrail

to support more dataflow systems, namely Apache Spark,
Apache Flink, and TensorFlow. Our goal is to reach beyond
real-time performance summaries and enable applications
such as straggler mitigation, performance regression detec-
tion across different software versions, and online what-if
analysis. Further, we plan to leverage transient critical paths
to support automatic performance optimization at runtime,
e.g., via adaptive resource allocation and scheduling strate-
gies. This direction is in line with our broader vision for a
next generation of self-tuned dataflow systems.

References
[1] BÖHME, D., ET AL. Scalable critical-path based performance

analysis. In IPDPS (2012).

[2] CHOW, M., ET AL. The mystery machine: End-to-end per-
formance analysis of large-scale internet services. In OSDI
(2014).

[3] MURRAY, D. G., ET AL. Naiad: A timely dataflow system. In
SOSP (2013).

[4] OUSTERHOUT, K., ET AL. Making sense of performance in
data analytics frameworks. In NSDI (2015).

Systems Group, Department of Computer Science, ETH Zurich
firstname.lastname@inf.ethz.ch

Ralf Sager, John Liagouris, Desislava Dimitrova, Andrea Lattuada,
Vasiliki Kalavri, Zaheer Chothia, Moritz Hoffmann, Timothy Roscoe

WHY IS MY DISTRIBUTED PROGRAM SLOW?

Understanding the performance
of distributed data processing

▸ many processes and activities
▸ computation is interleaved with data and

control communication
▸ execution dependencies are not

easy to infer and might be dynamic
▸ the cause of a bottleneck is usually

not isolated but is a chain of events
spanning multiple processes

SnailTrail: Online Bottleneck Detection for your Dataflow

client

W1

W1

scheduler

How to compute the critical path for
continuously running, dynamic distributed
applications, with unbounded input?

POST-MORTEM ANALYSIS IS EASY

1. Collect traces during execution

job start job end
profiler

2. Analyze traces offline

analyzer

▸ Critical path analysis

▸ Performance summaries

TRANSIENT CRITICAL PATH ANALYSIS

▸ Continuous computation of multiple transient critical
paths on trace snapshots
▸ tumbling, sliding, or custom windows

t1 t2

▸ aggregate analysis over multiple transient critical paths

▸ online betweenness centrality to find the most "central" activities

▸ online graph pattern matching to detect potential bottlenecks

THE EVOLVING PROGRAM ACTIVITY GRAPH

An evolving time-annotated graph model that captures
computation and communication dependencies among
distributed workers
▸ Vertices represent the start or end of activities and communication

▸ Edges represent the duration of activities and communication

trace stream

SYSTEM ARCHITECTURE

reference application

Timely

evolving program activity graph

Timelyevent logs

continuous transient
critical path analysis

real-time
performance
summaries

adaptive scheduling

dynamic scaling

straggler mitigation

feedback

real-time job
performance
management

“RDDs” “DataStreams” “Spouts and Bolts”

▸ task execution
▸ data exchange
▸ control messages
▸ data (de)-serialization
▸ buffer management

} common set of
low-level primitives

“Tensors” Performance Summaries

Visualization

mailto:rstname.lastname@inf.ethz.ch

