
A Characterization of State Spill in Modern Operating Systems

Kevin Boos, Emilio Del Vecchio, and Lin Zhong
Rice University

{kevinaboos, edd5, lzhong}@rice.edu

Over the past few decades, operating systems research has
gone to great lengths to achieve a spectrum of advanced com-
puting goals: process migration, fault isolation and tolerance,
live update, hot-swapping, virtualization, security, general
maintainability, and more. Better modularization, in which
related functionality is grouped into bounded entities, is often
touted as the most apt solution for realizing such goals, and it
seems promising from an initial glance. However, we argue
that modularization alone is not enough, and that the effects

of interactions between modules have a more pronounced
impact on these goals, as shown below.

Many efforts towards these goals have been ad-hoc and
platform-specific due to the complex nature of how soft-
ware states change and propagate throughout the system,
showing that modularity is necessary but insufficient. For
example, several process migration works have cited “resid-
ual dependencies” that remain on the source system as an
obstacle to post-migration correctness on the target system.
Fault isolation and fault tolerance literature has long real-
ized the undesirable effects of fate sharing among software
modules as well as the difficulty of restoring a process or
whole machine statefully after a failure, due to the sprawl of
states spread among different system components. Live up-
date and hot-swapping research has long sought to overcome
the state maintenance issues and inter-module dependencies
that plague their implementations when transitioning from
an old to a new version, forcing developers to write com-
plex state transfer functions. Likewise, state management
poses a problem to the virtualization of arbitrary software
components, significantly complicating the multiplexing and
isolation logic of the underlying virtualization layer (e.g.,
kernel or runtime).

State Spill is the Underlying Problem
Our primary contribution is to identify the problem of state

spill as a root cause of these problems and show that it is the
underlying reason why many computing goals are so difficult
to realize, even in the face of proper modularization. State
spill is the act of one software entity’s state undergoing lasting
changes as a result of its interaction with another entity. For
example, an application that interacts with a system service
and causes it to store application-relevant states in its memory,
then state spill has occurred from application to service.

The second contribution of this work is a manual analysis
of state spill across a broad variety of real-world systems and

their detrimental impact on the aforementioned computing
goals. We find that state spill is often a byproduct of applying
the locality principle to OS design, in that it often stems from
design choices that favor programming convenience or per-
formance over adherence to strict architectural or modularity
principles. Based on these case studies, we establish a clas-
sification of state spill according to common entity design
patterns: indirection layers, multiplexers, and communication
facilitators.

Our third contribution is the STATESPY tool that auto-
mates the detection of state spill in real systems, and an
in-depth, tool-guided analysis of state spill in Android’s sys-
tem service entities. STATESPY employs both runtime and
static analysis techniques that automate the capture, inspec-
tion, and differencing of a software entity’s state, with current
support for Java environments. Our key insight for runtime
analysis is to leverage existing debugging frameworks to non-
intrusively capture and compare entity states, a technique
that forgoes environment-specific features and generalizes
to any execution environment. The static analysis compo-
nent of STATESPY provides relevancy filters to the runtime
component as part of a cooperative feedback loop that it-
eratively improves the output of each component. Guided
by STATESPY, our experimental analysis of Android system
services finds that harmful state spill is both prevalent and
deep: nearly all Android system services have state spill, and
it often occurs in a chain across multiple services.

The effects of state spill can be mitigated by rethinking ex-
isting software designs patterns and communication schemes.
Modularization is not enough: reducing the impact of state
spill is key to simplifying software components and making
them amenable to migration, live update, fault recovery, vir-
tualization, and other computing goals. We have investigated
how state spill mitigation techniques like state hardening can
reduce fate sharing in Android system services in order to
make them fault tolerant and statefully recoverable.

In summary, we identify and formally define the problem
of state spill in modern OSes, classify its various incarnations,
and provide a tool that assists in the discovery of complex
state spill incarnations. The nature of this work is not to offer
a complete picture of state spill in every OS, but rather to
highlight the existence of state spill as a harmful phenomenon
and emphasize its negative impact on the realization of many
modern computing goals.

Characterizing State Spill in Modern Operating Systems
Kevin Boos, Emilio Del Vecchio, and Lin Zhong

State spill

is the underlying cause

Classification of state spill
Based on four common OS entity design patterns:

Indirection Layers convert between
high-level and low-level representations
of data and commands.
● Virtual File System abstraction
● Process abstraction
● Microkernel userspace servers
● Device drivers

Multiplexers temporally or
spatially share an underlying
resource among multiple clients.
● Schedulers / process mgmt
● Window managers
● High-level drivers

Dispatchers register client callbacks
to properly deliver events or messages.
● Device event callbacks
● Synchronization primitives
● Upcalls
● IPC layers

Inter-Entity Collaboration requires
synchronization of non-orthogonal
states to ensure correctness.
● Microkernel userspace servers
● Android services

Automated detection with SᴛᴀᴛᴇSᴘʏ

1) Detect quiescent point for safe analysis
 -- monitor transaction entry & exit points

2) Capture state of software entity
 -- key insight: use debugging frameworks

3) Difference captured states
 -- via existing tree comparison algorithms

4) Filter results with static analysis
 -- determine modification reachability

State spill in Android system services

● SᴛᴀᴛᴇSᴘʏ found state spill in 94% of Android
services analyzed, most with 1-10 instances

● Classified state spill instances in 60 transactions:
○ 39% caused by indirection layers
○ 21% caused by multiplexers
○ 55% from dispatchers/collaboration

● Better discovery of problems in app migration than
manual identification of residual dependencies [1]

● Discovered secondary spill in 27 services:

Designs to avoid state spill

● Client-provided resources
● Stateless communication
● Hardening of entity state
● Modularity without interdependence
● Separation of multiplexing from indirection

● Process migration residual dependencies
● Fault isolation/tolerance and software virtualization –

fate sharing
● Live update & hot-swapping – state transfer functions
● Software virtualization – shared states
● Maintainability – coupling despite modularity
● Security – loss of control over

Entity granularity dictates state spill

This method is
a transaction
handler invoked
by application
processes.

[1] Alex Van’t Hof, et al., Flux: Multi-Surface Computing in Android, EuroSys’15.

Advanced OS goals are challenging

State spill is relative to the chosen entity granularity.
Low-level entity interactions (shaded) are unimportant.

Goal in OS literature Impediments to that goal
Process migration Residual dependencies on original system

Fault isolation/tolerance,
software virtualization

Sprawl of states introduces fate sharing,
complicates isolation & multiplexing logic

Live update and
hot-swapping

Cannot modify individual entity in isolation;
state transfer functions are non-trivial

Maintainability Coupling remains despite modularization

Security Loss of control over propagated data

State spill is the act of a software entity’s state
undergoing a lasting change as a result of
handling a transaction from another entity.

RESTful
principles

