
Differential durability: fault-tolerant

distributed differential computation

†Andrea Lattuada, *Vasiliki Kalavri, †Moritz Hoffmann
Systems Group, Department of Computer Science, ETH Zürich

firstname.lastname@inf.ethz.ch, †PhD student, *poster presenter

Frank McSherry
Unaffiliated

mcsherry@gmail.com

Introduction Fault-tolerance mechanisms for streaming
computations can be expensive due to the requirement of
capturing a consistent state of the system, including in-flight
messages and operator state. We propose an efficient fault-
tolerance and durability mechanism for an existing incre-
mental computational model for distributed computation,
Differential Dataflow[DD]. We leverage the intrinsic prop-
erties of the model to achieve asynchronous replication and
fault-tolerance, with reduced overhead and recovery cost.

Motivation Operator state in streaming jobs is very valu-
able and should be guarded against failure: lack of fault-
tolerance would result in incorrect results after recovery. Ad-
ditionally, streaming jobs run for long periods of time, accu-
mulating state over several days or even months: reprocess-
ing all input in the case of failures would be prohibitively
expensive and time-consuming. The common approaches to
fault-tolerance based on snapshots or active replication can
have a significant negative impact on latency and overall per-
formance. We explore a technique that affords reduced im-
pact on performance by moving the replication out of the
critical path, thanks to the properties of the chosen compu-
tational model.

Differential Dataflow Differential Dataflow represents in-
puts and outputs as collections of items that evolve with (log-
ical) time. Each collection in differential dataflow reflects an
append-only log of immutable updates indexed by the logi-
cal timestamp. Updates are committed atomically every time
computation for a certain (logical) time is completed. For
this reason, each collection has known consistent states after
each commit: these are natural rollback points in case of fail-
ure. Additionally, (i) the state for an operator corresponds to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys’17,
Copyright c� ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/.

its input collection, indexed for efficient access, and (ii) op-
erator output is deterministic given a certain input. Thanks to
these properties, incomplete computation output for a logi-
cal timestamps can be dropped and reconstructed from the
operator input.

Our approach
Replication The immutable and append-only nature of the
collection log enables asynchronus replication of the state
with minimal coordination. A consensus-based commit pro-
cess is not required: as soon as a batch of updates for a cer-
tain timestamp has been replicated to enough machines to
ensure resilience to failure and network partitions, we can
promote that batch to a safe rollback point. Because repli-
cation is asynchronous, this approach side-steps the need to
select a tradeoff between snapshot volume and time needed
to recover from a failure.

Recovery The recovery process starts new copies of the
failed operators in the surviving nodes where their input col-
lections have been replicated. The logs are rolled back to a
safe point corresponding to a complete (logical) timestamp,
and execution is resumed.

Log garbage collection Accumulated deltas can take a
large amount of space, requiring periodic clean-up. Garbage
collection and log compaction can be performed by collaps-
ing deltas that fall behind a global safe rollback point. This
operation is the most expensive, but can be performed lazily
(with a tradeoff with memory consumption) and off the crit-
ical path.

Other features The ability to selectively roll-back opera-
tors to any previous consistent state enables a variety of ap-
plications beyond fault-tolerance. A section of the compu-
tation can be rewinded and then resumed with a tweaked
version of the business logic to compare the outcomes. In
a similar way, the replicated logs can serve as the basis for
speculative execution of parallel tasks to mitigate the adverse
effects of stragglers.

References

[DD] Frank Mcsherry, Derek G. Murray, Rebecca Isaacs, Michael
Isard, Differential dataflow

Differential Durability:
fault-tolerant distributed differential computation

B0!B1!B2
collection represented by
append-only log of deltas

Op operator state
is an indexed
view of input

collection

append-only,
immutable data

replicate to enough replicas to
ensure resilience to failure and
network partitions

operator replica replica

become
operator

recover
from logs

replicate in
RAM data
structure

sequence
numbers

S

replication does not need
coordination

A2 Op B2

A0!A1 B0!B1!A2 !B2

messages

deltas

collection
(operator input)

sequence
numbers

Op

collection
(operator output)

†Andrea Lattuada, †Vasiliki Kalavri, †Moritz Hoffmann, ‡Frank McSherry

†Systems Group, Department of Computer Science, ETH Zurich
firstname.lastname@inf.ethz.ch

MOTIVATION

DIFFERENTIAL DATA PROCESSING MODEL

OUR APPROACH: ASYNCHRONOUS REPLICATION RECOVERY

LOG COMPACTION

FUTURE WORK

➤ Any non-trivial streaming application
needs to maintain state

➤ rolling aggregation, windows

➤ Streaming applications run for days,
months, even years

➤ Distributed systems will fail
➤ how can we guard state against failures

and guarantee correct results after
recovery?

‡Unaffiliated
mcsherry@gmail.com

Differential Dataflow
McSherry, et al. [CIDR 2013]

Operators are functional, deterministically transform input
collection to output collection (represented as sequence of
deltas).

➤ Data-parallel, incremental processing of large-scale data

➤ Support for iterative and interactive queries

➤ Fine-grained synchronisation mechanism among workers

➤ Millisecond-scale latency

state

intermediate
buffersinput output ➤ Snapshot-based

➤ requires (non-blocking)
synchronisation

➤ Active replication to identical standbys

➤ requires 2x resources

➤ Atomic Transactions for message logs
state change

➤ requires expensive synchronisation

EXISTING FAULT-TOLERANCE MECHANISMS

➤ functional computation, can always recover from
input (via rollback)

➤ replicated data always consistent (append only)

➤ re-computation can be avoided if results are
available in log

➤ compact state to safe sequence no.

➤ compact collections to safe sequence no.

asynchronous; performed by replicas
independently, without synchronisation

➤ time travel

➤ dynamic rescaling

