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Introduction Fault-tolerance mechanisms for streaming
computations can be expensive due to the requirement of
capturing a consistent state of the system, including in-flight
messages and operator state. We propose an efficient fault-
tolerance and durability mechanism for an existing incre-
mental computational model for distributed computation,
Differential Dataflow[DD]. We leverage the intrinsic prop-
erties of the model to achieve asynchronous replication and
fault-tolerance, with reduced overhead and recovery cost.

Motivation Operator state in streaming jobs is very valu-
able and should be guarded against failure: lack of fault-
tolerance would result in incorrect results after recovery. Ad-
ditionally, streaming jobs run for long periods of time, accu-
mulating state over several days or even months: reprocess-
ing all input in the case of failures would be prohibitively
expensive and time-consuming. The common approaches to
fault-tolerance based on snapshots or active replication can
have a significant negative impact on latency and overall per-
formance. We explore a technique that affords reduced im-
pact on performance by moving the replication out of the
critical path, thanks to the properties of the chosen compu-
tational model.

Differential Dataflow Differential Dataflow represents in-
puts and outputs as collections of items that evolve with (log-
ical) time. Each collection in differential dataflow reflects an
append-only log of immutable updates indexed by the logi-
cal timestamp. Updates are committed atomically every time
computation for a certain (logical) time is completed. For
this reason, each collection has known consistent states after
each commit: these are natural rollback points in case of fail-
ure. Additionally, (i) the state for an operator corresponds to
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its input collection, indexed for efficient access, and (ii) op-
erator output is deterministic given a certain input. Thanks to
these properties, incomplete computation output for a logi-
cal timestamps can be dropped and reconstructed from the
operator input.

Our approach
Replication The immutable and append-only nature of the
collection log enables asynchronus replication of the state
with minimal coordination. A consensus-based commit pro-
cess is not required: as soon as a batch of updates for a cer-
tain timestamp has been replicated to enough machines to
ensure resilience to failure and network partitions, we can
promote that batch to a safe rollback point. Because repli-
cation is asynchronous, this approach side-steps the need to
select a tradeoff between snapshot volume and time needed
to recover from a failure.

Recovery The recovery process starts new copies of the
failed operators in the surviving nodes where their input col-
lections have been replicated. The logs are rolled back to a
safe point corresponding to a complete (logical) timestamp,
and execution is resumed.

Log garbage collection Accumulated deltas can take a
large amount of space, requiring periodic clean-up. Garbage
collection and log compaction can be performed by collaps-
ing deltas that fall behind a global safe rollback point. This
operation is the most expensive, but can be performed lazily
(with a tradeoff with memory consumption) and off the crit-
ical path.

Other features The ability to selectively roll-back opera-
tors to any previous consistent state enables a variety of ap-
plications beyond fault-tolerance. A section of the compu-
tation can be rewinded and then resumed with a tweaked
version of the business logic to compare the outcomes. In
a similar way, the replicated logs can serve as the basis for
speculative execution of parallel tasks to mitigate the adverse
effects of stragglers.
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MOTIVATION

DIFFERENTIAL DATA PROCESSING MODEL

OUR APPROACH: ASYNCHRONOUS REPLICATION RECOVERY

LOG COMPACTION

FUTURE WORK

➤ Any non-trivial streaming application 
needs to maintain state 

➤ rolling aggregation, windows 

➤ Streaming applications run for days, 
months, even years 

➤ Distributed systems will fail 
➤ how can we guard state against failures 

and guarantee correct results after 
recovery?
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Differential Dataflow 
McSherry, et al. [CIDR 2013] 

Operators are functional, deterministically transform input 
collection to output collection (represented as sequence of 
deltas). 

➤ Data-parallel, incremental processing of large-scale data 

➤ Support for iterative and interactive queries 

➤ Fine-grained synchronisation mechanism among workers 

➤ Millisecond-scale latency

state

intermediate
buffersinput output ➤ Snapshot-based 

➤ requires (non-blocking) 
synchronisation 

➤ Active replication to identical standbys 

➤ requires 2x resources 

➤ Atomic Transactions for message logs 
state change 

➤ requires expensive synchronisation

EXISTING FAULT-TOLERANCE MECHANISMS

➤ functional computation, can always recover from 
input (via rollback) 

➤ replicated data always consistent (append only) 

➤ re-computation can be avoided if results are 
available in log

➤ compact state to safe sequence no. 

➤ compact collections to safe sequence no. 

asynchronous; performed by replicas 
independently, without synchronisation

➤ time travel 

➤ dynamic rescaling


