
MEDEA: Towards Expressive Scheduling

of Long-Running Applications

Panagiotis Garefalakis†⇧ Konstantinos Karanasos† Peter Pietzuch⇧

Arun Suresh† Sriram Rao†

†
Microsoft

⇧
Imperial College London

Applications with long-running containers are increas-
ingly common in shared production clusters. Typical ex-
amples include streaming, machine learning, and latency-
sensitive applications with long-running executors for their
tasks, as well as traditional online services. In fact, within
Microsoft, we witness a substantial shift towards long-

running applications (LRAs) in production clusters: analyz-
ing four of Microsoft’s big data clusters we found that the
fraction of LRAs was ranging from 9% to above 30%.

These applications have stringent and complex schedul-
ing requirements: application owners want placement de-
cisions to respect complex constraints, e.g., co-locating or
separating long-running containers across node groups, ac-
counting for performance and resilience; cluster operators
must also achieve global objectives, such as minimizing fu-

ture regret, i.e., avoiding decisions that hinder placement of
upcoming applications. All of this must be done without af-
fecting the scheduling latency of short-running containers.

Despite the evolution from predominantly batch jobs to a
heterogeneous mix of applications, production clusters still
optimize for achieving low-latency for batch jobs, ignoring
the specific requirements of LRAs.

To this end, we propose MEDEA, a new cluster scheduler
with dedicated support for LRAs. MEDEA follows a two-
scheduler design: (i) for LRAs, it applies an optimization-
based approach with expressive placement constraints that
captures interactions between containers within and across
applications, while minimizing future regret; (ii) for short-
running containers, MEDEA uses a traditional task-based
scheduler to achieve low placement latency. Our implemen-
tation as part of Apache Hadoop/YARN shows that MEDEA
places LRAs effectively and in a scalable manner.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys ’17, April 23–26, 2017, Belgrade, Serbia.
Copyright © 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

MEDEA Scheduler

LRAs

Task-based
jobs

LRA Scheduler Task-based
Scheduler

Constraint
Manager Cluster State

Container
placement

Figure 1: MEDEA Scheduler design

Key features MEDEA addresses the aforementioned re-
quirements based on two novel features:
(i) expressive, high-level constraints. We introduce the no-
tions of container tags and node groups to allow applications
to concisely express powerful constraints within and across
applications. Constraints can refer to both existing and future
applications, and no knowledge of the underlying cluster’s
organization is required.
(ii) two-scheduler design. We formulate the scheduling of
LRAs as an optimization-based problem. As shown in Fig-
ure 1, MEDEA uses a dedicated scheduler for the LRA place-
ment, whereas task-based applications are passed directly
to a traditional scheduler. This design allows us to perform
careful placement of LRAs, which can tolerate relatively
higher scheduling latencies, without impacting the schedul-
ing of task-based applications.
Implementation and evaluation We implemented MEDEA
as an extension to Apache Hadoop/YARN, one of the most
widely used production cluster managers. We show that on
a 274-node cluster, MEDEA, thanks to its expressive con-
straints, can reduce tail latency for HBase requests by 3⇥
and increase its throughput by 34% compared to YARN.
Coupling MEDEA with resource isolation mechanisms, such
as cgroups, can further improve its performance. Unlike
single-scheduler designs, we show that MEDEA does not im-
pact the scheduling latency of task-based applications. We
are currently in the process of contributing MEDEA compo-
nents to Apache Hadoop YARN1.

1 https://issues.apache.org/jira/browse/YARN-5468

Resource Manager

Task-based Scheduler

LRA Scheduler

1

4

. . .

Heartbeats

3

Container Tag Map
Tags Containers

Tag 1 Container X
Container Y
Container N

Job
Manager

Node
 Manager

Containers

C1

Cn

6

5

Job
ManagerJob

ManagerApplication
Master

Application Constraint Map
app_001 C= {container, tag-constraint, node-group}

Node
 Manager

Containers

C1

Cn

Constraint Manager

Container Tags

Node Groups

Placement Constraints

2

C
lu

st
er

 S
ta

te

LRAs are increasingly common:
• Interactive data-intensive applications, e.g., Spark, Impala, Hive

• Streaming systems, e.g., Storm, Heron, Flink, Millwheel

• Latency-sensitive applications, e.g., HBase, Memcached

• ML frameworks, e.g. Spark ML-Lib and SystemML

Long-running applications (LRAs) = applications with
long-running containers, running for hours, days or
even months

MOTIVATION
Place a given LRA in the cluster in a way that:
1. Meets the complex LRA requirements
2. Optimizes for future regret
3. Does not affect scheduling of traditional task-based apps

GOAL

Panagiotis Garefalakis1,2, Konstantinos Karanasos1, Peter Pietzuch2, Arun Suresh1, Sriram Rao1

1Microsoft 2Imperial College London

Performance benefit of application constraints

Two-scheduler design benefit

The support of the EPSRC Centre for Doctoral Training in High Performance Embedded and Distributed Systems (HiPEDS,
Grant Reference EP/L016796/1) is gratefully acknowledged.

Key/value store instances and streaming job example

Expressive Scheduling of
Long-Running ApplicationsAEEM

A
0

50

100

150

200

B C D F E
0

50

100

150

200

250

300
YARN YARN-Cgroups MEDEA MEDEA-Cgroups

R
eq

ue
st

la
te

nc
y

(m
s)

0

10

20

30

40

CL1 CL2 CL3 CL4

M
ac
hin

es
	u
se
d	

fo
r	L

RA
s	(
%)

Machines used for LRAs in four Microsoft clusters

Rack r1

S1
KV1

KV2

Rack r2

KV2

KV1

Upgrade
Domain u1

Upgrade
Domain u2

n1 n2 n5 n6

n3 n4 n7 n8

S1

S1

S1

S1 Collocate KV with S
instances
(performance)

1. Application owners
Improve LRA performance and resilience

2. Cluster operators
Place LRAs in a way that does not hinder placement of
future applications (minimize future regret)

3. Scheduling latency
LRAs can tolerate higher scheduling latencies, but short-
running containers scheduling should not be affected

Node group Example cluster node sets

node {n1}, {n2}, {n3}, {n4}, {n5}, {n6}, {n7}, {n8}
rack {n1, n2, n3, n4}, {n5, n6, n7, n8}
upgrade domain {n1, n2, n5, n6}, {n3, n4, n7, n8}

PLACEMENT CONSTRAINTS
Expressive
Intra- and inter-application constraints
Affinity/anti-affinity/cardinality constraints

High-level
Refer to current and future LRAs
Do not require knowledge of the cluster’s organization

Constraint expression:
C = [container, tag-constraint, node-group],

where tag-constraint = { tag, cmin, cmax }
• Affinity: Caf = [tID_002, { appID_0023 AND JM, 1, ∞ }, node]
• Anti-affinity: Caa = [tID_002, { heron, 0, 0 }, upgrade_domain]
• Group cardinality: Cgc = [*, { IO_critical, 0, 10 }, rack]

Nodes/node groups Example tags

node n1 memcached, appID_0023, heron, appID_0037
rack r1 memcached, appID_0023, appID_0024, heron

A B C D F E
YCSB Workload

0
10
20
30
40
50
60
70
80
90

Th
ro

ug
hp

ut
(K

op
s/

s) YARN
YARN-Cgroups
MEDEA
MEDEA-Cgroups

0 200 400 600 800 1000
Number of Nodes

101

102

103

104

105

106

107

S
ch

ed
ul

in
g

ru
nt

im
e

(m
s

-l
og

sc
al

e)

MEDEA
Popular Tags

Aurora
Node Candidates

0 5 10 20 30 40 50 60 70 80 90 100
Percentage of services

0

2

4

6

8

10

12

S
ch

ed
ul

in
g

la
te

nc
y

(m
s) ILP ALL

MEDEA

• Two-scheduler design: 9.5x better latency when LRAs are 20% of workload

• Scalability: comparable latency with greedy approaches (LRAs 20% of cluster)

HBase stressed with YCSB, MR jobs generated with GridMix on a 274 machine cluster

• MEDEA achieves up to 3.9x better tail latency (99th percentile)
• MEDEA achieves up to 53% better throughput (35% to YARN+cgroups)

SCHEDULING REQUIREMENTS

Avoid resource &
constraint
fragmentation
(future regret)

Spread containers
of same job across
racks and upgrade
domains (resilience)

Avoid node
imbalance
(future regret)

LRA SCHEDULING
• Optimization-based scheduling, formed as an ILP problem
• Support for both soft and hard constraints
• Objective function: minimize future regret

o Node imbalance, resource & constraint fragmentation

• Re-planning of LRAs
o Minimize migration cost

