
Untie a Knot in a Last Stage Buffer

Jeseong Yeon∗, Minseong Jeong∗, Sungjin Lee†, Eunji Lee∗‡

∗Chungbuk National University, †Inha University, ‡University of Wisconsin-madison

https://oslab.cbnu.ac.kr, sunjin.lee@inha.ac.kr, eunji@cbnu.ac.kr

Historically, storage medium has used a small amount of

RAM as a disk buffer to mask its poor random performance

and limited endurance. Because a volatile buffer, however,

can bring with it data loss and improper ordering of updates

in a crash, a flush command has been introduced as a stor-

age interface that forces device to immediately commit any

pending writes to storage. This mechanism sacrifices perfor-

mance by clearing an entire buffer upon a flush, whereas it is

commonly issued with less stringent requirements; however

the overhead is affordable because the buffer size is limited.

However, the cost of flushing is increasing significantly

as latest SSDs are attempting to deploy a larger buffer to

compensate for their continuously decreasing latency and

endurance. For example, 1TB SSDs are employing 512MB

to 2GB RAM as a disk buffer, while some manufacturers are

exploring ways of using host memory as a storage buffer, in-

stead of incorporating a large RAM within storage [1]. In

either case, the conventional flushing mechanism yields a

more painful impact, considerably forfeiting the possibility

of buffering or coalescing I/Os in the buffer. To better under-

stand this, we run a simple experiment where four threads

write 1MB data on a file at 4KB granularity, respectively,

one of them issuing an fsync call every 100KB writes. From

Fig. 1, we can see that the flushing limits performance sig-

nificantly as a buffer size increases; it also causes long tail

latency in response time due to the varying amount of writes

across the runs.

This paper addresses this challenge with a new storage

primitive called range flush, which transfers additional infor-

mation on which data are associated with a flush command.

This primitive enables underlying devices to identify and

flush the associated data only, eliminating avoidable writes

and relaxing the constraints in I/O processing. The benefit of

range flush seems straightforward, but realizing it effective

in an I/O system, from host to storage, is not without chal-

lenge. We demonstrate the effectiveness of range flush by

[Copyright notice will appear here once ’preprint’ option is removed.]

256M 512M 1G 2G
0

100

200

300

400

500

Cache size

io
p

s

FLUSH

RFLUSH

NOFLUSH

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200

C
D

F
(n

o
rm

)

Response Time (s)

flush
rflush

noflush

Figure 1: IOPS and Response Time.

N

R
F F

0

20000

40000

60000

fileserver-512M

T
h

ro
u

g
h

p
u

t(
K

B
/s

)

N

R
F F

0

100

200

300

400

500

tpcc-512M

IO
P

S

Figure 2: Fileserver and TPC-C Performance.

implementing its protocol in F2FS and Linux storage stacks.

Specifically, we implement an fsync handling module in a

file system to make use of an RFLUSH (range flush) command

instead of FLUSH. The FLUSH command delivers inefficiency

because it flushes the entire buffer while the semantic of

fsync persists specific file data only. To avoid this, RFLUSH

transfers a file inode number along with the command, such

that underlying storage can obtain the LBAs of the affected

data by referencing the inode data structure. Note that we en-

sure that the storage flushes the associated metadata in a tan-

dem, otherwise the system will end up with corruption in a

crash. The storage protocol of RFLUSH is implemented in an

open-channel SSD development platform 1. We measure the

performance by running two heterogeneous workloads con-

currently: fileserver (large asynchronous writes) and TPC-C

(small synchronous writes). Fig. 2 shows RFLUSH achieves

1.23x and 1.22x better performances than FLUSH the two

workloads when a buffer size is 512MB.

Acknowledgments

This work was supported by the Ministry of Science, ICT & Future Plan-

ning (No. NRF-2014R1A1A3053505).

References
[1] M.-C. Chen, “Host Memory Buffer (HMB) based SSD System”, Flash

Memory Summit, 2015.

1 https://github.com/chamdoo/bluedbm

1 2017/3/26

2 2017/3/26

